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The Rayleigh criterion specifies the minimum separation
between two incoherent point sources thatmaybe resolved into
distinct objects. We revisit this problem by examining the
Fisher information required for resolving the two sources.
The resulting Cramér–Rao bound gives the minimum error
achievable for any unbiased estimator.When only the intensity
in the image plane is recorded, this bound diverges as the sep-
aration between the sources tends to zero, an effect that has
been dubbed the Rayleigh curse. Nonetheless, this curse can
be lifted with suitable measurements. Here, we work out opti-
mal strategies and present a realization for Gaussian and slit
apertures, which is accomplishedwith digital holographic tech-
niques. Our results confirm immunity to the Rayleigh curse
and an unprecedented experimental precision. © 2016

Optical Society of America

OCIS codes: (100.6640) Superresolution; (110.3055) Information theo-

retical analysis; (270.5585) Quantum information and processing.
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Optical resolution is a measure of the ability of an imaging system
to resolve spatial details in a signal. As realized long ago [1], this
resolution is fundamentally determined by diffraction, which
smears out the spatial distribution of light so point sources
map onto finite spots at the image plane. This information is aptly
encompassed by the point-spread function (PSF) [2].

The diffraction limit was deemed an unbreakable rule, nicely
epitomized by the time-honored Rayleigh criterion [3]: points can
be resolved only if they are separated by at least the spot size of the
PSF of the imaging system.

The conventional means by which one can circumvent this
obstruction are to reduce the wavelength or to build higher
numerical-aperture optics, thereby making the PSF narrower.
In recent years, though, several intriguing approaches have
emerged that can break this rule under certain special circumstan-
ces [4–10]. Despite their success, these techniques are often
involved and require careful control of the source, which is
not always possible in every application.

Quite recently, a groundbreaking proposal [11–13] has re-
examined this question from the alternative perspective of
quantum metrology. The chief idea is to use the quantum Fisher

information to quantify how well the separation between two
poorly resolved incoherent point sources can be estimated.
The associated quantum Cramér–Rao lower bound (qCRLB)
gives a bound of the accuracy of that estimation. Surprisingly
enough, the qCRLB maintains a fairly constant value for any sep-
aration of the sources, which implies that the Rayleigh criterion is
secondary to the problem at hand.

In this Letter, we elaborate on this issue, presenting quite a
straightforward way of determining the ultimate resolution
limit. More importantly, we find the associated optimal measure-
ment schemes that attain the qCRLB. We study examples of
Gaussian and sinc PSFs and implement our new method in a
compact and reliable setup. For distances below the Rayleigh
limit, the uncertainty of this measurement is much less than with
direct imaging.

Let us first set the stage for our simplified model. We follow
Lord Rayleigh’s lead and assume quasimonochromatic paraxial
waves with one specified polarization and one spatial dimension,
x denoting the image-plane coordinate. To facilitate possible gen-
eralizations, we phrase what follows in a quantum parlance. This
is justified because wave optics and quantum mechanics share the
same mathematical structure. With this in mind, a wave of com-
plex amplitude U �x� can be assigned to a ket jU i, such that
U �x� � hxjU i, where jxi is a vector describing a point-like
source at x.

Moreover, we consider a spatially invariant unit-magnification
imaging system characterized by its PSF, which represents its nor-
malized intensity response to a point light source. We shall denote
this PSF as I�x� � jhxjψij2 � jψ�x�j2.

Two incoherent point sources are imaged by that system. For
simplicity, we consider them to have equal intensities and to be
located at two unknown points X 1 � s∕2 and X 2 � −s∕2 of the
object plane. The task is to give a sensible estimate of the sepa-
ration s � X 1 − X 2. The relevant coherence matrix, which
embodies the image-plane modes, can be jotted down as

ϱs �
1

2
�jψ1ihψ1j � jψ2ihψ2j�; (1)

where jψ1i � exp�iPs∕2�jψi (and an analogous expression for
jψ2i), and P is the momentum operator (in units ℏ � 1 through-
out) that generates displacements in the x variable. In the
x-representation, ϱs appears as the normalized mean intensity
profile, which is the image of spatially shifted PSFs; namely,
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ϱs�x� � 1
2 �jψ�x − s∕2�j2 � jψ�x � s∕2�j2�. This confirms that

the momentum acts as a derivative P � −i∂x .
For points close enough together, (s ≪ 1), which we shall

assume henceforth, a linear expansion gives

jψ1i � N �1� iPs∕2�jψi; jψ2i � N �1 − iPs∕2�jψi;
(2)

whereN � �1� hψ jP2jψis2∕4�−1∕2 is a normalization constant.
The crucial point is that hψ2jψ1i ≠ 0, so the spatial modes
excited by the two sources are not orthogonal, in general. This
overlap is at the heart of all the difficulties of the problem, for
it implies that the two modes cannot be separated by independent
measurements.

To bypass this problem, we bring in the symmetric ��� and
antisymmetric �−� states

jψ�i � C��jψ1i � jψ2i� ≃ jψi;

jψ−i � C−�jψ1i − jψ2i� ≃
Pjψiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jP2jψi

p ; (3)

where C� and C− are normalization constants. When
hψ jPjψi � 0, these modes are orthogonal. This happens when,
e.g., the PSF is inversion symmetric, which encompasses most of
the cases of interest. The modes in Eq. (3) constitute a natural set
for writing the coherence matrix. Actually, in this set, ϱs is diago-
nal ϱsjψ ji � pjjψ ji, with eigenvalues p− � hψ jP2jψis2∕4 and
p� � 1 − p−.

With our formalism, the quantum estimation theory can be
directly applied to problems of classical optics. The pivotal
quantity is the quantum Fisher information [14], which is a
mathematical measure of the sensitivity of an observable quantity
(the PSF) to changes in its underlying parameters (emitters
position). It is defined as F � Tr�ϱsL2s�, where the symmetric
logarithmic derivative Ls is the self-adjoint operator satisfying
1
2 �Lsϱs � ϱsLs� � ∂ϱs∕∂s [15]. A direct calculation finds that

F � 2

�
1

p−
hψ−j

∂ϱs
∂s

jψ−i �
1

p�
hψ�j

∂ϱs
∂s

jψ�i
�
≃ hψ jP2jψi;

(4)

and F turns out to be independent of s.
The associated CRLB (the qCRLB) ensures that the variance

of any unbiased estimator ŝ of the quantity s is then bounded by
the reciprocal of the Fisher information; viz,

�Δŝ�2 ≥ 1

F
� 1

hψ jP2jψi : (5)

As this accuracy remains also constant, considerable improve-
ment can be obtained if an optimal measurement, saturating
Eq. (5), is implemented. We stress that although this ultimate
resolution follows from the qCRLB, the quantum nature of light
plays no role.

Before we proceed further, we make a pertinent remark. The
Fisher information for standard image-plane intensity detection
(or photon counting, in the quantum regime) reads as

F std �
Z

∞

−∞

1

ϱs�x�

�
∂ϱs�x�
∂s

�
2

dx: (6)

Performing again a first-order expansion in s, F std can be
expressed in terms of the PSF I�x�:

F std ≃ s2
Z

∞

−∞

�I 0 0�x��2
I�x� dx: (7)

Now, F std goes to zero quadratically as s → 0. This means
that, in this standard strategy, detecting the intensity becomes
progressively worse at estimating the separation for closer sources,
to the point that the standard CRLB diverges at s � 0. This
divergent behavior has been termed the Rayleigh curse [11]. In
other words, there is much more information available about
the separation of the sources in the phase of the field than in
the intensity alone.

From our previous discussion, it is clear that the projectors
Πj � jψ jihψ jj (j � �; −) comprise the optimal measurements
of the parameter s ≪ 1 [16]. Notice that in Eq. (4), the antisym-
metric mode p− gives the leading contribution, and thus, most
useful information can be extracted from the Π− channel. As
a consequence, the wave function of the optimal measurement
becomes

ψopt�x� � hxjψ−i �
ψ 0�x�ffiffiffiffi

F
p ; (8)

where

F � hψ jP2jψi �
Z

∞

−∞
�ψ 0�x��2dx: (9)

Let us consider two relevant examples of PSFs, the Gaussian
and the sinc,

ψG�x� � 1

�2πσ2�14 exp

�
−
x2

4σ2

�
;

ψS�x� � 1ffiffiffiffi
w

p sin�πx∕w�
πx∕w

; (10)

where σ and w are effective widths that depend on the wave-
length. From Eq. (9) it is straightforward to obtain the quantum
Fisher information for these two cases: 1∕�4σ2� and π2∕�3w2�.
The optimal measurements are then

ψG
opt�x� �

−1

�2π�14σ3
2

x exp

�
−
x2

4σ2

�
;

ψS
opt�x� �

ffiffiffi
3

p �
w

1
2

πx
cos

�
πx
w

�
−

w
3
2

π2x2
sin

�
πx
w

��
: (11)

To project on these functions, one needs to separate the image-
plane field in terms of the desired spatial modes. This has been
implemented in our laboratory with the setup sketched in Fig. 1.
Two incoherent point-like sources were generated by a digital
light projector (DLP) Lightcrafter evaluation module (Texas
Instruments), which uses a digital micromirror chip (DMD) with
square micromirrors of 7.6 μm size each. This allows for precise
control of the points separation by individually addressing two
particular micromirrors. The DMD chip was illuminated by
an intensity-stabilized He–Ne laser equipped with a beam
expander to get a sufficiently uniform beam. The spatial incoher-
ence is ensured by switching between the two object points so that
only one was ON at a time, keeping the switching time well below
the detector time resolution.

The two point sources were imaged by a low numerical-
aperture lens and shaped by an aperture placed behind the lens.
A circular diaphragm produced Airy rings, but these are well ap-
proximated by a Gaussian PSF. The sinc PSF was obtained by
inserting a squared slit. We experimentally measured the values
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σ � 0.05 mm and w � 0.15 mm. The Rayleigh criteria for these
values are 2.635σ and w, respectively. For Gaussian PSFs, we
somewhat arbitrarily define the Rayleigh criterion to be the sep-
aration for which the maximum drop of intensity between the
two images quantified by I�0�∕�max I�x�� equals that of two
Rayleigh-distance separated sinc PSFs (≈81%). The two-point
separations s were varied in steps of 0.01 mm, which corresponds
to steps 0.2σ for the Gaussian and 0.067w for the sinc. The small-
est separations attained are 13 times smaller than the Rayleigh
limit for the Gaussian and 10 times for the sinc.

The projection onto any basis is performed with a spatial light
modulator (CRL OPTO) in the amplitude mode. We prepare a
hologram at the image plane produced as an interference between
a tilted reference plane wave and the desired projection function
ψopt. When this is illuminated by the two-point source, the
intensity in the propagation direction of the reference wave is����
Z

∞

−∞
ψ�
opt�x�ψ�x � s∕2�dx

����
2

�
����
Z

∞

−∞
ψ�
opt�x�ψ�x − s∕2�dx

����
2

:

(12)

Different projections can be obtained with different refer-
ence waves.

To prepare the hologram, the nominal PSF parameters (σ and
w) were measured in advance. For the Gaussian PSF, we prepared
projection on both the zeroth- and first-order Hermite–Gaussian
modes. The measurement of the zeroth-order mode is used to
assess the total number of photons in each measurement run.
For the sinc, the image was also projected on the PSF itself
and its first spatial derivative.

The desired projection is carried by the first diffraction order.
To get the information, the signal is Fourier transformed by a
short focal lens and detected by a cooled electron-multiplying
CCD (EMCCD) camera (Raptor Photonics) working in the lin-
ear mode with on-chip gain g to suppress the effects of read-out
noise and dark noise. As sketched in Fig. 1, the outcome of a
measurement consists of two photon counts detected from the
Fourier spectrum points representing spatial frequencies con-
nected with the reference waves. These data carry information
about the separation of the two incoherent point sources.

The noise from a final number of detection events is further
increased by the excess noise due to the random nature of
the EMCCD gain, the background noise caused by the scattered

photons reaching the detector, and by slight misalignments of the
SLM hologram with respect to the two-point image. While the
excess camera noise tends to increase the measurement errors
uniformly across the measured range of separations, the constant
background noise affects mostly the smallest separations.
For those, the signal—the intensity of the antisymmetric
projection—is weak, and the background photons make consid-
erable contributions.

The numbers of photons n0 and n− detected in the PSF jψi
and antisymmetric (optimal) modes jψ−i, respectively, was deter-
mined by using the EMCCD pixel capacity and g . The relative
frequency of measuring the antisymmetric projection was calcu-
lated as f − � n−∕�n0 � n−�, the denominator n0 � n− being
roughly the total number of detected photons. The estimator
of the separation is then obtained by solving the relation f − �
hψ−jϱsjψ−i for s. We make no assumption about the smallness
of s, which helps to produce unbiased estimates of larger
separations.

To determine estimator characteristics, 500 measurements for
each separation were carried out. The results are summarized
in Fig. 2. The optimal method overcomes the direct position
measurement for small and moderate separations. For the
Gaussian PSF (left panel) and the smallest separation 0.2σ, the
experimental mean squared estimator (MSE) is 2.35 × qCRLB;
i.e., more than 20 times smaller than the error of the position
measurement (51.2 × qCRLB). For the sinc, the experimental
MSE is 2.23 × qCRLB for the smallest separation, which is
4.5 times lower than the error of the position measurement
(10.1 × qCRLB).

Two different effects increase the error slightly above the theo-
retical limit. For small and moderate separations, the background
and excess noise discussed above become important. For large sep-
arations, the two-mode measurement derived in this paper is no
longer optimal. However, in this regime, the direct CCD imaging
becomes nearly optimal, so any measurement setup attaining the
theoretical limit would bring about only marginal improvement
with respect to the simple CCD detection. We mention in pass-
ing that the optimal measurement of the sinc PSF is more chal-
lenging due to very fast oscillations of the PSF derivative.
Nevertheless, the results are quite satisfactory.

In summary, we have developed and demonstrated a simple
technique that surpasses traditional imaging in its ability to

Fig. 1. Schematic diagram of the experimental setup. Two incoherent point sources are created with a high frequency switched digital micromirror chip
(DMD) illuminated with an intensity-stabilized He–Ne laser. The sources are imaged by a low-aperture lens. In the image plane, projection onto different
modes is performed with a digital hologram created with an amplitude spatial light modulator (SLM). Information about the desired projection is carried
by the first-order diffraction spectrum, which is mapped by a lens onto an EMCCD camera.
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resolve two closely spaced point sources. The method does not
require any exotic illumination and is applicable to classical in-
coherent sources. Much in the spirit of the original proposal
[11–13], our results stress that diffraction resolution limits are
not a fundamental constraint but, instead, the consequence of
traditional imaging techniques discarding the phase information.

Moreover, our treatment also suggests other directions of
research. Whereas the point source represents a natural unit
for image processing (upon which hinges the very definition of
PSF), other “signal units” can be further expanded and processed
in a similar way. Optimal detection can then be tailored to suit the
desired target. This clearly provides a novel and not yet explored
avenue for image-processing protocols. We firmly believe that this
approach will have a broad range of applications in the near
future.

Note: While preparing this manuscript, we came to realize that
similar conclusions, although with different techniques, were

being reached by Sheng et al. [17], Yang et al. [18], and
Tham et al. [19].
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Fig. 2. Mean-square error of the estimated separation for Gaussian
(left panel) and sinc (right panel) PSFs. Separations are expressed in units
of PSF widths σ and w and the MSE in units of the qCRLB. The main
graph compares the performance of our experimental method (blue sym-
bols) with the theoretical lower bound for the CCD measurement (thin
red curve) and the ultimate limit (thick red line). The vertical dotted lines
delimit the 10% of the Rayleigh limit for each PSF. The insets show the
statistics of the experimental estimates. Mean values are plotted in blue
dots with standard deviation bars around. The true values are inside the
standard deviation intervals for all separations and the estimator bias is
negligible. For the two largest measured separations, the experimental
MSE nicely follows the CRLB calculated for the experimentally realized
antisymmetric projection (orange dots).
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