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We establish the conditions to attain the ultimate resolu-
tion predicted by quantum estimation theory for the case
of two incoherent point sources using a linear imaging sys-
tem. The solution is closely related to the spatial symmetries
of the detection scheme. In particular, for real symmetric
point spread functions, any complete set of projections with
definite parity achieves the goal. © 2017 Optical Society of
America
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The spatial resolution of any imaging device is restricted by
diffraction [1], which causes a sharp point on the object to blur
into a finite-sized spot in the image. This information is en-
coded in the point spread function (PSF) [2], whose size
determines the resolution: two points closer than the PSF width
will be difficult to resolve due to the substantial overlap of their
images. This is the physical significance of the celebrated
Rayleigh criterion [3].

Needless to say, improving this limit has been a source of
continuing research. Actually, in the past two decades a number
of top-notch techniques have appeared, overcoming Rayleigh
limit under particular conditions. They rely on nonconven-
tional strategies, such as near-field imaging or on nonclassical
or nonlinear optical properties of the object [4–10]. However,
these schemes are often challenging and require careful control
of the source, which is not always possible.

Quite recently, Tsang and coworkers [11–13] have looked
at this question from the perspective of estimation theory.
The idea is to use the Fisher information and the associated
Cramér–Rao lower bound (CRLB) to quantify how well the
separation between two poorly resolved incoherent point
sources can be estimated. When only light intensity at the im-
age plane is measured (the basis of all the standard techniques),
the Fisher information falls to zero as the separation between
the sources decreases and the CRLB diverges accordingly; this is
the Rayleigh curse [11]. However, when the Fisher information

of the complete field is calculated, it remains constant and so
does the CRLB, evidencing that the Rayleigh limit is subsidiary
to the problem.

These stunning predictions prompted a sequence of rapid-
fire experimental implementations [14–17] and quantum gen-
eralizations [18,19]. Inspired by these developments, in this
Letter we derive simple conditions that ensure ultimate reso-
lution by singling out sets of spatial modes such that, when
the signal is projected onto them, yield constant Fisher infor-
mation, thus attaining the CRLB. These measurements not
only explain and generalize the known superresolution
schemes, but also allow us to devise feasible strategies on de-
mand, so that the separation of the sources can be estimated
with the best achievable precision.

The key feature of these modes is the spatial symmetry: for
any symmetric PSF, the complete set has a definite (i.e., odd
or even) parity.

We follow the basic model in Refs. [11–13] and consider
quasi-monochromatic paraxial waves with one specified polari-
zation and one spatial dimension, x, denoting the image–plane
coordinate. Here, we focus on the spatial degrees of freedom of
the signal and formulate what follows in a quantum language,
even though it can be directly applied to a classical scenario.
This is justified because wave optics and quantum mechanics
share the same mathematical structure. A coherent complex
amplitude U �x� can be assigned to a ket jU i, such that
U �x� � hxjU i, where jxi represents a point-like source located
at x. In this way, we model the wave from a point source as a
pure state, which is an excellent approximation for stars in ob-
servational astronomy or molecules in localization microscopy.

We take a spatially invariant imaging system. The associated
PSF, which is just the normalized intensity response to a point
light source, is denoted as I�x� � jhxjΨij2 � jΨ�x�j2, where
Ψ�x� is the amplitude PSF, which we require to be inversion
symmetric; i.e., Ψ�x� � Ψ�−x�, an assumption met by most
aberration-free imaging systems.

We assume that two mutually incoherent point sources are
located at two unknown points X� � �s∕2 in the object
plane. This regular configuration entails no essential loss of
generality. Our objective is to estimate the separation s �
X� − X −. In principle, the two sources might have unequal
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intensities. The density matrix for the image–plane modes is
thus

ρs � qjΨ�ihΨ�j � �1 − q�jΨ−ihΨ−j; 0 ≤ q ≤ 1; (1)

where the spatially shifted responses areΨ��x�� hx�s∕2jΨi.
This ρs gives the normalized mean intensity profile ρs�x� �
qjΨ�x − s∕2�j2 � �1 − q�jΨ�x � s∕2�j2. In general, the
spatial modes excited by the two sources are not orthogonal
(hΨ−jΨ�i ≠ 0), which means that they cannot be separated
by independent measurements. This is the crux of the problem.

To estimate s we must perform appropriate measurements.
Complete von Neumann tests [20] will prove sufficient for our
purposes. They consist of a set of orthonormal projectors
fjnihnjg (with hnjn 0i�δnn 0 ) resolving the identity Σnjnihnj�1.
Each projector represents a single output channel of the meas-
uring apparatus; the probability of detecting the nth output is
given by the Born rule pn�s� � hnjρsjni. The generalization to
continuous observables is otherwise straightforward.

The statistics of the quantum measurement carries informa-
tion about s. This is aptly encompassed by the Fisher informa-
tion [21,22], which is a mathematical measure of the sensitivity
of an observable quantity to changes in its underlying param-
eters (the emitter’s position). It is defined as

F s � E
��

∂ log pn�s�
∂s

�
2
�
; (2)

with E�Y � being the expectation value of the random variable Y .
The CRLB [23,24] ensures that the variance of any unbiased
estimator ŝ of the quantity s is bounded by the reciprocal of
the Fisher information; viz,

Var�ŝ� ≥ 1

F s
: (3)

Let us take the von Neumann measurement as the continu-
ous projection over jxihxj, which corresponds to conventional
image–plane intensity detection (or photon counting, in the
quantum regime). We stress that this is the information used
in any traditional technique, including previous superresolu-
tion approaches. The Fisher information (per detection event)
for this scheme reads as

F s �
Z

∞

−∞

1

ϱs�x�

�
∂ϱs�x�
∂s

�
2

dx ≃ s2
Z

∞

−∞

�I 0 0�x��2
I�x� dx; (4)

where, in the second integral we have performed a first-order
expansion in s, which is valid only for points sufficiently close
together. Then, F s goes to zero quadratically as s → 0. This
means that detection of intensity at the image plane is progres-
sively worse at estimating the separation for closer sources, to
the point that the variance in this situation is doomed to
blow up.

To bypass this obstruction, we need a different measure-
ment that incorporates the information available in the phase
discarded by the intensity detection. In what follows, we re-
quire our measurement to have a well-defined parity; i.e.,

h−xjni � �hxjni: (5)

This, together with the assumed spatial symmetry of the
amplitude PSF, means that

an � hnjΨ−i �
Z

hnjxihx − s∕2jΨidx

� �
Z

hnjxihx � s∕2jΨidx � �hnjΨ�i: (6)

Accordingly,

pn ≡ janj2 � jhnjΨ�ij2; (7)

and the measurement does not feel the two-component struc-
ture of the signal. The original two-point resolution problem
has been effectively transformed to localization of a single point
source.

In addition, we impose the condition that the probability
amplitudes an have to fulfill

Im

�
an

∂a	n
∂s

�
� 0; ∀ n; s: (8)

We emphasize that, for infinitesimal separations s this becomes
the optimality condition found in Ref. [25] for resolving two
neighboring pure states. The more stringent constraint Eq. (8)
extends the optimality of the measurement to all separations.
Indeed, by Eq. (8), the Fisher information becomes

F s � 4
X
n

���� ∂an∂s

����
2

: (9)

Next, we note that jΨ�i � exp��isP∕2�jΨi. Here, P is the
momentum operator that generates displacements in the x var-
iable, so it acts as a derivative P � −i∂x , much in the same way
as in quantum optics. In the momentum representation

an �
Z

hnjpihpjΨie−isp∕2dp; (10)

which, upon inserting this in Eq. (9), performing the derivative,
and using the completeness, gives the final compact expression

F s �
Z

p2jΨ�p�j2dp � hP2i; (11)

where Ψ�p� is the Fourier transform of the PSF amplitude
Ψ�x�. This is known to be the quantum limit for the problem
in hand [25,26]. The Fisher information appears then as the
second moment of P with respect to the PSF and is therefore
independent of the separation of the points. Consequently, the
variance in the CRLB remains constant and one lifts the
Rayleigh curse, as heralded. Hence, we have identified optimal
conditions, Eqs. (5) and (8), enabling two-point resolution to
attain the quantum CRLB and the ultimate resolution limit.

Next, we address the problem of finding the optimal mea-
surements for a given PSF. By writing an � janj exp�iαn�, the
condition in Eq. (8) requires the phases αn to be independent
of s. As these phases can be absorbed in the basis jni, this is
tantamount to requiring real probability amplitudes an. For real
Ψ�x�, this can be satisfied by restricting the choice of the mea-
surement basis to modes with real amplitudes hxjni, as it is clear
from Eq. (6).

We have thus come to an interesting observation: for an
optical system with a real symmetric amplitude PSF, the ulti-
mate resolution is achieved by projecting the signal onto any
complete set of real spatial modes hxjni with a well-defined par-
ity. As there are many such choices, the ultimate resolution
should not be considered as a rarity, but rather as a feature
shared by many permissible detection schemes. Furthermore,
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these detections are universal; i.e., they attain the quantum
limit for all real and symmetric PSFs, and hence irrespective
of the knowledge of the true PSF.

When the amplitude PSF becomes complex, but still spa-
tially symmetric, we may proceed as follows. As the spatial
parity is preserved by the Fourier transform, the required real-
valuedness of an is ensured by

hnjpihpjΨi � ��hnjpihpjΨi�	: (12)

Hence, optimal measurements can be constructed starting from
a complete set of real modes with definite parity in momentum
representation and rephasing them to absorb the momentum
symmetric phase of the hpjΨi term. This adjustment preserves
the required spatial symmetry of the modes.

Because of the ambiguity inherent in the conditions in
Eqs. (5) and (8), there is ample room for further refinement.
In particular, finding efficient measurements that for a given
PSF quickly saturate the CRLB with a small number of pro-
jections may be crucial for implementing ultimate imaging in
practice. It is known that in the limit of small s, all the infor-
mation can be extracted with a single projection proportional to
the first derivative of Ψ�x� [17]. This suggests that one could
try to project the signal on a set of orthonormalized derivatives
of Ψ�x�. Indeed, we propose to construct the efficient measure-
ment basis jni in momentum space as

Φn�p� ≡ hpjni � Qn�p�Ψ�p�; (13)

where Qn�p� is a system of orthogonal polynomials, with re-
spect to the measure jΨ�p�j2dp. Since this measure is symmetric,
they satisfy the symmetry property Qn�−p� � �−1�nQn�p� [27].

One can check that this generates a bona fide measurement
basis. Truly, for the states in Eq. (13), the condition in Eq. (5)
trivially holds, the probability amplitudes an � hnjΨ�i are
real, and Eq. (8) is fulfilled. Of course, one would expect that
the number of significant projections is small, and even the first
derivative is sufficient in the superresolution regime.

The efficient PSF-adapted modes attaining the CRLB in
Eq. (11) for all separations are obtained by an inverse
Fourier transform

Φn�x� ≡ hxjni � 1ffiffiffiffiffi
2π

p
Z

Qn�p�Ψ�p�eipxdp: (14)

The general rules in Eqs. (13) and (14) of finding the PSF-
adapted scheme make the second main result of this Letter.

As a first, important example, we consider a Gaussian PSF
amplitude Ψ�x� � �2π�−1∕4 exp�−x2∕4�, with unit variance
(σ � 1). Although a circular diaphragm produces Airy rings,
these are routinely approximated by a Gaussian PSF, so this
is more than a curiosity. The Fourier transform of Ψ�x� is again
a Gaussian, and a direct calculation gives F s � 1∕4. The op-
timal PSF-adapted set consists of Hermite–Gauss polynomials,
which are orthonormal with respect to the PSF.

As a second example, we take a slit aperture with Ψ�x� �
1ffiffi
π

p sinc�x� and Fourier transform Ψ�p� � 1ffiffi
2

p rect�p∕2�. Here,
sinc�x� � sin�x�∕x and rect�p� is 0 outside the interval
�−1∕2; 1∕2� and 1 inside it. The set Φn�p� is now the Legendre
polynomials Ln�p�, which are complete in the unit interval. In
this way,

an � hnjΨ�i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p

2

Z
1

−1
Ln�p�e−isp∕2dp: (15)

By Eq. (11), the Fisher information is F s � 1∕3 and, by
Eq. (14), the efficient measurement modes are given as

Φn�x� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1∕2

p Jn�1
2
�x�ffiffiffi
x

p ; (16)

where Jk�x� is the Bessel function of the first kind. For n � 1,
the measurement reduces to the first derivative of the sinc func-
tion, as expected. In Fig. 1 we plot the first PSF-adapted modes
from Eq. (16).

Each projection contributes with a piece of information,

F s;n �
π
h
nJn−12�s∕2� − �n� 1�Jn�3

2
�s∕2�

i
2

�2n� 1�s ; (17)

Fig. 1. First PSF-adapted modes from Eq. (16) for a sinc response.
In blue solid lines we plot the symmetric modes [n � 0 (thick) and
n � 2 (thin)] and in red broken lines we have the antisymmetric ones
[n � 1 (thick) and n � 3 (thin)].

Fig. 2. Fisher information attained by the first D projections on the
Hermite–Gauss basis with arbitrarily chosen σ � π (orange bars) and
the PSF-adapted measurement Eq. (16), when applied to a system
with a sinc impulse response. The separation and the corresponding
Rayleigh limit are s � 1 and s � π, respectively. More than a hun-
dred of Hermite–Gauss projections must be measured to access 98.5%
of the quantum Fisher information (indicated by a horizontal red line),
whereas just three projections of the PSF-adapted measurement are
sufficient.
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and, interestingly, these complicated terms sum up to a total
of F s � 1∕3.

The advantage of this approach can be illustrated by
comparing the performance of two optimal detections: the
PSF-adapted measurement from Eq. (16) and the generic
Hermite–Gauss projections, for the same sinc aperture.
Figure 2 shows the information obtained by summing the
Fisher information over the first D projections. Both measure-
ments attain the quantum CRLB; however, the number of
effective projections to be measured is considerably less for
the former.

Finally, we mention in passing that since orthogonality of
the measurement modes is not required for deriving the quan-
tum limit from Eq. (11), the same resolution can be obtained in
principle with over-complete detections (rank-one probability
operator measures), such as the modes comprised of the real
and imaginary parts of plane waves that correspond to meas-
uring the real and imaginary parts of the Fourier spectrum
of the signal.

The experimental realization of PSF-adapted measurements
can be in principle achieved with a spatial mode demultiplexer;
i.e., an optical system converting a given set of optimal modes
Φn�x� into a set of spatially disentangled modes Φ 0

n�x� ≡
hxjn 0i � hxjRjni (with Φ 0

n�x�Φ 0
n 0 �x� ≈ 0 for n ≠ n 0), fol-

lowed by a direct intensity measurement. For example, to project
the signal on a set of Hermite–Gauss modes, the signal can be
subject to conversion from Hermite–Gauss to Laguerre–Gauss
modes and, subsequently, to transverse-momentum modes
[28,29]. Those are focused on a CCD camera to produce spatially
separated spots whose total intensities become proportional to
pn�s�. For other sets of modes, the mode converter transforma-
tion U can always be approximated with a sequence of phase
modulations and free propagations [30] and realized with a
digital-holography setup similar to that used in Ref. [17].

In conclusion, we have shown that an optimal sub-Rayleigh
two-point resolution limit can be achieved with an optical sys-
tem having a symmetric amplitude PSF, provided the system
output is projected onto a suitable complete set of modes
with definite parity. Particularly useful modes can be generated
from the derivatives of the system PSF, which in the limit
of small separation can access all available information with
a single projection.

The above formalism can be generalized to other transfor-
mations provided the frequency spectrum is replaced with a
suitable representation, in which the assumed transformation
becomes a simple phase shift.
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