Nová koncepční a konstrukční řešení pro zobrazení s PMS

P. Bouchal (FSI VUT Brno) a Z. Bouchal (KO PřF UP Olomouc)

PB 4 Zobrazování s podporou technologie PMS Garant: R. Chmelík

Program PB4:

• Metody a systémy pro jednocestnou nekoherentní korelační holografii (VUT a UP)

- Metody pokročilé rekonstrukce obrazu v holografickém mikroskopu (VUT)
 - Měření optických ploch pomocí PMS (Meopta)

Obsah příspěvku:

- Nekoherentní korelační mikroskopie metody, ověřovací experimenty, laboratorní systémy
 - přehled výsledků dosažených v CDO
 - nové výsledky za období 2013-2014
- Mechanický konstrukční návrh korelačního mikroskopu (M. Antoš, VUT samostatný příspěvek)
 - Náměty pro využití korelačního zobrazení mimo mikroskopii
 - (holografický korelační teleskop, vírová metrologie)

Základní princip korelační mikroskopie

Stav na počátku řešení projektu CDO Prostorový Mikroskopový I_1, I_2, I_3 modulátor světla objektiv Korelační intenzitní CCD Zpracování záznamů záznamy metodou fázových posunutí + Fresnelova transformace T_1, T_2, T_3 Digitálně rekonstruovaný 3D obraz Fázové mapy pro rozdělení světla $O \approx \sum_{i} \left| u_{Si} \right|^{3} +$ $+ u \wr_i u_{Rj}$ Výpočetní model pro základní geometrii vln.

Ověření záznamu a rekonstrukce testovacích objektů v základním režimu zobrazení.

Používáno záření s úzkým spektrem (1-5 nm).

Nízké rozlišení (MO nevyužit).
 Malé zorné pole (MO nevyužit).

Pokročilá korelační mikroskopie

Přehled hlavních výsledků PB4 :

- Návrh a realizace systému s rozšířeným zorným polem.
- Optimalizace geometrie experimentu z hlediska rozlišení.
- Ověření možnosti sub-difrakčního rozlišení.
- Návrh a realizace korelačního zobrazení se spirálním zvýrazněním hran.

Výsledky za období 2013-2014:

- Stanovení podmínek pro širokospektrální korelační zobrazení.
- Achromatické PMS zobrazení v bílém světle.
- Korelační holografické zobrazení ve fluorescenční mikroskopii.
- Princip rotujícího zobrazení a vírové lokalizace polohy v digitální holografii.
- Experimentální lokalizace polohy částic v korelační mikroskopii.

Systém s plným korelačním překrytím

Korelační zobrazení se spirálním kontrastem

Selective edge enhancement in three-dimensional vortex imaging with incoherent light

Petr Bouchal¹ and Zdeněk Bouchal^{2,*}

¹Central European Institute of Technology, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic ²Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic *Corresponding author: bouchal@optics.upol.cz

Cesta k sub-difrakčnímu rozlišení v bílém světle

Refraktivní a difraktivní disperze

Projevy difraktivní disperze:

chromatická vadachromatická změna difrakční účinnosti

Podélná chromatická vada

$$\Delta f = \lambda_D \frac{\Delta \lambda}{\lambda_F \lambda_C} f_D \approx 0.3 f_D$$

Spektrální difrakční účinnost $\eta_m(\lambda) = \sin c^2 \left[\pi \left(\frac{\lambda_0}{\lambda} - m \right) \right]$

Korekce difraktivní disperze PMS

Abbe number V₁

Achromatic correction of diffractive Princip achromatické korekce dispersion in white light SLM imaging Zdeněk Bouchal,^{1,*} Vladimír Chlup,¹ Radek Čelechovský,¹ Petr Bouchal,^{2,3} and Ioan Cristian Nistor¹ Afocal corrector SLM ¹Department of Optics, Palacky University, 17. listopadu 1192/12, (material dispersion) (diffractive dispersion) λ_2 771 46 Olomouc, Czech Republic ²Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic ³Central European Institute of Technology, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic *bouchal@optics.upol.cz #206390 - \$15.00 USD Received 12 Feb 2014; revised 5 Apr 2014; accepted 7 Apr 2014; published 12 May 2014 $\delta f(\lambda_1, \lambda_2)$ (a) (b) 19 May 2014 | Vol. 22, No. 10 | DOI:10.1364/OE 22.012046 | OPTICS EXPRESS 12046 (C) 2014 OSA Achromatic SLM Podmínka achromatické korekce 87 $-\frac{1}{V_2} + \frac{1}{\kappa V_{dif}} = 0, \quad \kappa = \frac{f_{dif}(\lambda_0)}{f_{\star}(\lambda_0)}$ $\delta f(\lambda_0, \lambda_1) \ll \delta f(\lambda_1, \lambda_2)$ (c) Sekundární spektrum Apochromatizace κ=20 **κ=30** κ=50 $P_1 = P_2 = P_{dif}$ $\delta f(\lambda_0, \lambda_1) = \frac{f^2(\lambda_0)}{f_L(\lambda_0)} \left[\frac{P_1}{V_1} - \frac{P_2}{V_2} + \frac{P_{dif}}{\kappa V_{dif}} \right]$ V $\frac{V_1}{V_1} = \frac{P_1 - P_{dif}}{V_1 - V_{dif}}$ 30 $V_2 P_2 - P_{dif}$ $P_{j} = \frac{n_{1}(\lambda_{1}) - n_{1}(\lambda_{0})}{n_{1}(\lambda_{1}) - n_{1}(\lambda_{2})}, \quad P_{dif} = \frac{\lambda_{1} - \lambda_{0}}{\lambda_{1} - \lambda_{2}}$ 25 20 dostupná skla 20 25 30 35 40 45 nesplňují

Achromatický korektor pro PMS Hamamatsu

Návrh a dokumentace KO

Realizace Meopta-optika, s.r.o.

Left Surface:	Material Specification:	Right Surface:
R 66.833 CC #e 25.2 Prot. Chom. 0.2 - 0.4 ③ - 3/ 10(2) 4/ 9' 5/ 5x0.25 6/ - To be comented	Ohara S-LAL9 n(550 nm) 1.693693±0.001 v(550 nm) 24.69±0.8% 0/ 20 1/ 5x0.25 2/ 1:1	R 49.762 CC #e 25.2 Prot. Cham. 0.2 - 0.4 (0) - 3/ 10(2) 4/ 9' 5/ 5x0.25 6/ - To be cemented
korektor-rozpty]ka1	(LaK9)	
rozptylka1 Ind. a	ecc. ISO 10110	

Achromatická korekce PMS

Achromatické PMS zobrazení

Konstrukce pro korelační fluorescenční mikroskopii

zdroj Xe výbojka excitační / emisní filtr 365 nm / 550 nm 543 nm / 582 nm 628 nm / 680 nm

ověřovací experimenty fluorescenční USAF test fixované fluorescenční kuličky 500 nm

Vírová lokalizace polohy v digitální holografii

Axiální lokalizace v optické mikroskopii

- změna tvaru nebo otočení rozostřeného obrazu
- omezený podélný rozsah (hloubka ostrosti MO)
- nutnost použít 4f systém
- komplexní modulace malá účinnost

Axiální lokalizace v digitální holografii

- nižší přesnost než v OM
- větší rozsah než v OM
- nutnost opakovaných záznamů předmětu ("phase shifting")
- vysoká časová náročnost algoritmů pro vyhodnocení polohy (peak searching, quantification of image sharpness, 3D deconvolution, inverse problem approach)

$$E \propto FT^{-1} \left\{ S \quad FT^{1} \left\{ FrT \quad \{H\} \right\} \right\}$$

Lokalizace pomocí elektrického pole vírového svazku

Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices

Petr Bouchal^{1,2,*} and Zdeněk Bouchal³

 ¹Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
 ²Central European Institute of Technology, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic
 ³Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic

*Petr:Bouchal@ceitec.vutbr.cz

 #221096 - \$15.00 USD
 Received 18 Aug 2014; accepted 26 Oct 2014; published 25 Nov 2014

 (C) 2014 OSA
 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.030200 | OPTICS EXPRESS 30200

Originalita a výhody návrhu

- spojení optické rotace s holografickou rekonstrukcí
- nová metoda rotace pro intenzitní detekci (vírová analogie pro "self-imaging")
- nová metoda rotace pro elektrickou intenzitu (nedifrakční vírový svazek)
- stabilní profil obrazu (při rozostření rotace bez změny tvaru)
- velký rozsah axiální lokalizace
- vyhodnocení rotace z jediného standardního korelačního záznamu (odpadá "phase shifting")
- přímé (neiterační) vyhodnocení polohy všech částic z jediné rekonstrukce (možnost sledování pohybu částic)
- vyšší citlivost lokalizace (cca 2x proti jiným metodám dig. mikroskopie)

Experimentální vírová rotace se změnou periody

Experimentální vírové rotace se změnou dosahu

Experimentální záznam (rovinná referenční vlna, NA=0.25, f_m =400 mm, Δ_2 = 600mm)

Axiální rotační lokalizace fluorescenčních kuliček

Fluorescenční uspořádání korelačního mikroskopu: fluorescenční filtry 543 nm / 582 nm, MO NA=0.9, fixované fluorescenční kuličky Invitrogen 500 nm

Axiální lokalizace polystyrenových kuliček

Záznam a vírová rekonstrukce polystyrenových kuliček 1 μ m (rovinná referenční vlna, NA=0.25, f_m=400 mm, Δ_2 = 600mm)

Lokalizace pohyblivých polystyrenových kuliček

Podíl na prezentovaných výsledcích

VUT Brno

Petr Bouchal

návrh nových metod korelačního zobrazení

- návrh a realizace laboratorního korelačního mikroskopu
- princip vírové lokalizace objektů v digitální holografii
 - realizace prezentovaných experimentů

Martin Antoš

mechanická konstrukce korelačního mikroskopu

Meopta-optika, s.r.o.

 realizace 3 kusů afokálních korektorů disperze PMS (v rámci PB4 CDO TA ČR)

UP Olomouc

Zdeněk Bouchal

- teoretické zázemí experimentů
- výpočetní model pro širokospektrální korelaci
 - koncepční návrh disperzní korekce PMS, spolupráce na ověření funkce korektoru

Vladimír Chlup

 návrh a optimalizace korektoru pro PMS, příprava dokumentace, spolupráce na ověření funkce

Radek Čelechovský

 měření chromatické vady a rozlišení korigovaného PMS

Michal Baránek

metody rotace obrazu pro optickou mikroskopii

